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~ What is “Rapid”?

It depends (dramatically!) on who you ask ...

Typically from <1pus to ~1000s or longer (9+
orders of magnitude)

Community/science-dependent;
Detector/technology-dependent
— Photon-counting technologies fastest options

— “Staring” technologies (i.e. standard CCDs and IR
arrays) usually slower, but may have similar
ultimate sensitivity at speeds in the ~10 Hz range

For purposes here, | will address >0.1 Hz
(<10s)



Rotation Powered Pulsars
Early multi-wavelength work from radio to IR,
optical, X-rays, y-rays (Crab & other young RPP)

Primary science = pulsar emission mechanisms

LB6 EIKENBERREY ET AL. Vol. 467

Trail

Fiz. 1.—Pulse profile with phase conventions used in the analyses
Fi, 2—Peak half-width half-maximum vs, wavelength for Peak 1 leading
and trailing edges.



.

Rot"tTon\Powered Pulsars

Recent (last week on arXiv)

detection of (relatively

bright) optical pulsations
from transitional MSP
J1023+0038 (Ambrosino et
al., 2017)
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Maybe more optical pulsars out
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Potential probe of the transitional magnetosphere

there?



~ Accreting Pulsars
Optical pulsations seen
from Her X-1 45+ yrs ago

Frequency shifts vs X-ray S» e
pulsations (reprocessing

on moving surfaces)
Notable orbital/super-

. Middleditch et al., 1973
orbital phase dependence

= multiple reprocessing
sites
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Wcrgtmg Pulsars
LMXB 4U1626-67 .

Shows optical 6000
pulsations, QPOs, flares

Optical pulses also show
sideband due to orbital
modulation (?)
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Raman et al., 2016



Mptical Reprocessing

Major player in the Accreting Pulsars

Also seen in bursters, Z sources, etc.

Optical reverb can distinguish between near/far X-ray
reverb sites D R : =
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—_ ““Relativistic Jets

Lots of sources sho'w a HUGE variety behaviors
Flares (from <1s to 104 s)

QPOs

Reprocessing of jet flux

Spectral lines

Polarization

Recent example V404 Cyg



VMRagid Multi-Wavelength

Y. Dallilar, SSE, et al., 2017, Science (accepted)
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w404 Cyg - “Big Dip

Broadband “Decay”
Seen In all bands exc. radio
Simultaneous start

Decay timescale varies with

energy
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T~
a=-0.49 +0.03

Matches synchrotron
cooling (a=-0.5)
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" What s it?

A cloud of relativistic electrons in a magnetized blob,
dominated by synchrotron cooling from IR to X-rays

No evidence of expansion
«Same apparent B-field for >200s
*Adiabatic expansion would change cooling timescale

Long duration of the overall event (hours) = Quasi-steady
So ... a quasi-stationary cloud of high-E e- around a black hole

during a jet-producing episode
= the (Jet-launching) corona (11??!)
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Log(Fluence [Jy.s])
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What do tﬁﬂ‘ast[!ares tell us?

T, > 10" K = non-thermal (as Gandhi et al. 2016 surmise)

«SEDs vary wildly:
=“Peaked”
=“Optically thin”
=“Cutoff e distribution”

*SEDs change quickly
=Only seconds separate flares of different SED

*SEDs soften only slightly over flare time
=Cooling seems ~adiabatic
*Probably jet-like plasmoids (??)
=More to come ...



Rapid —MuwlifWave\[\ength Correlated Variability
with STROBE-X

Scientific drivers are strong: probing accretion
structure, magnetosphere geometry, relativistic
jet launching

Optical/IR MUCH more informative than radio
Previous impact — a mixed bag
Why?

Optical/IR resources often not available when
needed ... (= we’re doing it wrong!)



What resources do we need?
Telescopes (How big?)
Can see lots of these things with 1-m class in optical

Good S/N with 2-m to 4-m class

Bigger often better ... (but better is the enemy of
good enough)

Instruments: Fast, low-noise, high QE
But not many pixels needed (3-5 “pixels”)
Coordination

Need access to telescopes (at the right time)

Need the right instruments on them (at the right
time)



S are improving ...
Telescopes -

Lots more time available on 4-m class

Queue scheduling of large telescopes with rapidly-
selectable instruments

Instrument technologies
Frame Transfer CCDs & Fast IR arrays to “kHz

APDs: Vis/IR photon-counting with good QE (~80%)
Fast polarimeters too

Coordination
Queue-scheduling and TOOs more common now
SmartNET (http://www.isdc.unige.ch/smartnet/)



Polybcum: A Different Approach

|_ow-cost quasi-dedicated optical/NIR timing/spectroscopy

*Recent evolution in key COTS technologies:
 Low-cost telescopes with <l1-arcsec guided tracking
 Low-cost, small-package PCs (<$200 for Jetson)
 L_ow-cost high-performance fast CCDs for A&G

» Use optical fibers and photonic technology to combine the
light, and “synthesize” larger apertures

 Cost per square meter drops by ~10 compared to standard
telescopes

Dynamically re-configurable from single large aperture, to
multiple autonomously-pointing/observing small apertures



0 ulus Basic Unit

AR

COTS Telescope +
Mount -

Local Control
Compute-

Ethernet CablV
Main Control

Compute-

Focal Plane Package

Each unit provides:
e Autonomous
acquisition
e Autonomous
guiding
e Autonomous focus

tracking
= Fiber output
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From Telescope

Into Fiber



Jetson Computers




PolyOculus — Photonic-“Lightbucket” Telescope Arrays
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Output to
next level




- PolyOculus — “Level 2” Unit1
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PolyOculus-Cost Comparison
Std 1-m $750K-$1M $1M - $1.3M
Std 2.5-m $6M-$10M $1M - $1.5M
Std 4-m $20M $1.5M
Keck 10-m ~S100M (currentS) S1.3M
TMT 30-m $1000M (facility)  $1.3M
PolyOculus Level-1 ~ $150K S0.2M
PolyOculus Level-2  S800K S0.16M
PolyOculus 17-m S28M S0.1M

PolyOculus 42-m S157M S0.1M



~ PolyOculus & Strobe-X

PolyOculus can be coupled to low-cost APDs (target,
comparison stars, sky bkgd) or spectrographs

Cost per square meter drops by ~10x compared to
standard telescopes

Dedicated low-cost facility — always available; Single-
site ~$1M total cost

Multiple sites could provide excellent (~75%) overlap
with Strobe-X for total cost ~$5M; During “off-time”
(>50%0 per site) can do LSST follow-up spectroscopy



