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Talk Outline
• Taxonomy and Unification of Cosmic Jets

– Jets from Dead Stars
• Supermassive black holes (active galactic nuclei)
• Stellar mass white dwarfs, neutron stars, and black holes

– Jets from Stars Being Born
– Jets from Dying Stars

• Planetary nebulae
• Supernovae
• Black hole formation

• Production of Cosmic Jets by Rotating Magnetic Fields
– Launching
– Acceleration and Collimation
– Attaining, and Maintaining, Relativistic Speeds (stability)
– Special Applications: Supernovae & Gamma-ray Bursts

• Summary and Conclusions
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Taxonomy and Unification 
of Cosmic Jets



Cosmic Jets from Dead Stars:  
Supermassive Black Holes

• 1918: First observed jet:  optical jet in M87, 
by Heber Curtis (Lick Observatory)

• 1943: Carl Seyfert’s active galactic nuclei

• 1950s:  Cosmic radio sources (radio galaxies):  
Vir A,  Cen A,  Cyg A, etc.

• 1959, 1962:   3rd Cambridge (3C)              
Radio Survey – radio galaxies                       
and quasars

3C 272.1=M84

Virgo A=M87

3C 204 
(quasar)



Cosmic Jets from Dead Stars:  
Supermassive Black Holes (cont.)

BL Lac

Type I Type II

• 1968:  BL Lacertae objects and “blazars” –
radio galaxy and quasar jets seen end-on

• 1970: “Radio quiet” quasars (w/o jets?)

• 1974: Fanaroff & Riley Classes I & II;                            
all radio quasars seemed to be FR II objects

• 1981: “Superluminal” motion and relativistic jets       
(1.005 < γjet < 25;  0.1c < vjet < 0.999c); 3C 273, 
3C 279

• 1993: Helical, “wiggled” jets deep in the radio 
galaxy core (Conway & Murphy 1993; Reid 1998)

• 2001: Some “radio quiet” quasars are FR I radio 
sources (Blundell & Rawlings 2001);               
even RQQs have jets!

M87 core



Current Grand Unified Model
For All Active Galactic Nuclei

• Unification by viewing angle:                  
FR I radio galaxy ⇒ BL Lac;                   
FR II radio galaxy ⇒ radio QSR;      
Seyfert 2 ⇒ Seyfert 1

• Unification by black hole mass:
Seyfert (107 M!) ⇒ QSO (109 M!)

• Unification by accretion rate:
LLAGN (dm/dt << 1) ⇒ Sy/QSO (dm/dt ~ 1) 

• Unification by black hole spin:
Radio quiet QSO ⇒ Radio loud QSR

jet

dusty 
torus

black 
hole

accretion 
disk



• 1968:  Radio pulsar discovered in Crab Nebula (M1)
• 1969: Magnetic pulsar winds suggested as explanation for Crab Nebula

energy source (Michel; Goldreich & Julian; Gunn & Ostriker)
• 1970: Pulsars must be born with large “kick” velocities (150 km s-1)
• 2002: HST/Chandra optical/X-ray movies of Crab Nebula (Hester et al.);    

vjet ~ 0.5c;  pulsar moves in the direction of this jet at ~ 150 km s-1

Cosmic Jets from Dead Stars:  
Isolated Neutron Stars



SS 433
Some Examples:
• 1979:  Discovery of SS 433 jets 

(Margon et al. 1979); vjet = 0.26 c; 
possible rapidly-accreting neutron star

• 1980: Discovery of jets in Symbiotic 
stars  accreting white dwarf binaries
(Herbig 1980; Kafatos & 
Michalitsianos 1982); vjet <= 0.02 c

• 1992-4: Discovery of jet in black hole 
X-ray binary GRS 1915+105 (Castro-
Tirado et al. 1992); vjet ~ 0.87–0.98 c

Cosmic Jets from Dead Stars:  
Neutron Stars, White Dwarfs, and Black Holes

In Binary Star Systems

R Aquarii

GRS 
1915+105



• 1992-4:  Discovery of Microquasars 
(Mirabel & Rodriguez) and 
superluminal motion (1.005 < γjet < 25;  
0.1c < vjet < 0.999c)

• 1998: X-ray ‘dips’ (loss of inner 
accretion disk) associated with radio 
jet ejection

• 2002: 3C 120 Seyfert galaxy shows a 
similar X-ray dip when radio jet blobs 
ejected (Marscher et al. 2002)

⇒ Jets from supermassive black holes 
and from stellar-mass black holes are 
very, very similar

Cosmic Jets from Dead Stars:  
Stellar-Mass Black Holes in Binaries (cont.)

Quasar   
3C 223

X-ray 
Source   

1E 1740.7-
2942



Cosmic Jets from Stars Being Born:  
Proto-planetary Systems

• 1981: First star-formation bipolar outflows discovered 
• 1995: Jets associated with proto-planetary accretion disks 

(HST)

⇒ Jets appear to be ejected at roughly the escape velocity of 
the central star (vjet ~ vesc ~ 0.0005c)

HH 34HH 30

0.02 ly 
(1 light-
week)

2 ly250 km/s



Cosmic Jets from Dying Stars:  
“Planetary” Nebula Systems

• Death of a star < 10 M! in mass
– Enters the red giant/supergiant phase near end of its life
– Benignly ejects a “planetary” nebula 
– Leaves behind a white dwarf (< 1 M!; < 109 cm in size)

• 1996-7: First planetary nebula jets discovered      
(velocities up to vjet ~1000 km s-1)



Cosmic Jets from Dying Stars:  
Supernovae

• Death of a star 10 - 30 M! in mass
– Enters the red supergiant phase near end of its life
– Iron core collapses to neutron star
– Outer envelope violently ejected:  luminosity ~ 1044 erg s-1

for few months (total ~1051 erg of energy)
• 1991: First evidence for jets in SN explosions:                      

polarization of core-collapse supernova ejecta
(Wang et al. 1996, 2001; Leonard et al. 2000, 2001)
– Probably electron scattering from an asymmetric explosion
– Π increases the deeper we see into the into the SN core
– Π increases with time (becomes more asymmetric)
– Π direction remains constant in time and wavelength

• Conclusions:
– Core-collapse supernovae have a global prolate shape that            

appears to be associated with the central engine
– A jet is producing energy comparable to the explosion itself

and significantly altering the shape of the envelope
⇒ The explosion itself may be powered by a jet

IIa (1%)

IIb (2%)

Ib/Ic (4-7%)



Cosmic Jets from Dying Stars:  
Gamma-ray Bursts

• Death of a star > 30 M! in mass
– Red supergiant core expected to collapse to black hole
– Observational consequences of this unclear until now

• “Long-duration” Gamma-ray Burst (1 – 2 per day)
– Bright flash of gamma-rays, usually at very high z (> 1)
– Lasts only of order seconds (2 - 300 seconds)
– Apparent  luminosity up to ~ 1052 erg s-1 (108 × SN!)                    

• 1999: First conclusive evidence for GRB jet:                                       
the “beaming break” in the light curve of GRB 990123
(Rhoads 1998; Castro-Tirado et al. 1999)
– GRBs have relativistic outflow (γ ~ 300 initially)
– Can only see solid angle δΩ ~ 1/ γ 2 of outflow
– As flow decelerates, we see more of outflow
– If flow is a jet with opening angle θ,                               

when γjet ~ 1/θ, we have seen all of the jet there is to see;                  
GRB X-ray light curve begins to decay faster

• Conclusions:
– GRBs are, indeed, jets with θ ~ few degrees
– Typical GRB jet energy ~1051 erg  > ~  energy of SN
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Isolated White Dwarf

• Supernova, GRB, and isolated pulsar jets provide  missing links in a grand 
unified scheme

Pulsar in 
Binary/SS 433

White Dwarf  in 
Binary/Symbiotic Star

Protostar

C-O

Progenitor 
Massive Star

H
He

Fe

Core 
Collapse 
to N.S.

Isolated Pulsar

OR

Isolated 
Black Hole

Gamma-ray Burst

OR

Failed 
Supernova

Direct 
Core/Mantle 
Collapse to 

B.H.Gas 
Cloud

Main 
sequence 
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> 10 M!

MHD-jet-from 
Protopulsar / 
Supernova

Red 

Giant

Planetary 
Nebula

Black Hole in 
Binary/Microquasar

Proposed Grand Unified Model
For All Stellar Jet Sources



Characteristics of ALL Jet Sources
• Occur when there is accretion, shrinkage, or collapse of 

plasma in a gravitational field
• Occur in systems that are probably in a rapid rotation state

– Conservation of angular momentum implies that even a slight 
amount of rotation would be amplified greatly by collapse

• Are associated with magnetic fields
– Radio jets emit via the magnetic synchrotron mechanism
– Jets are produced by stars that we believe have a strong magnetic 

field (pulsars, protostars, accretion disks)

⇒ The occurrence of jets appears to be a result of excess 
angular momentum produced in accretion or collapse
A jet represents the expulsion of that excess angular 
momentum by magnetic processes



Production of Cosmic Jets 
By Rotating Magnetized Systems

1.  Jet Launching



Basic Principles of 
Magnetohydrodynamic Jet Production

• Basic MHD mechanism: Blandford (1976); Lovelace (1976)
– Acceleration by rotating black holes (Blandford & Znajek [1977])
– Acceleration by rotating [thin] accretion disks (Blandford & Payne [1982])

• First numerical simulations: Uchida & Shibata (1985)

• Key ingredients in their “Sweeping Pinch” mechanism
– Thick accretion disk or torus
– Keplerian differential rotation (Ω ∝ R-3/2)
– Initial strong vertical magnetic field

(strong enough to slow disk rotation)
– J × B force splits up into magnetic pressure and tension: 

-∇ (B2 / 8π) +  (B • ∇B) / 4π



Basic Principles of 
Magnetohydrodynamic Jet Production 

(continued)
• Typical results (e.g., Kudoh et al [1998]; Uchida et 

al. [1999])
– Differential rotation twists up field into toroidal 

component, slowing rotation
– Disk accretes inward, further enhancing differential 

rotation and Bϕ

– Greatest field enhancement is at torus inner edge

– Magnetic pressure gradient (dBϕ
2 / dZ) accelerates plasma 

out of system
– Magnetic tension [hoop stress] (–Bϕ

2/R)  pinches and 
collimates the outflow into a jet

– Outflow jet speed is of order the escape velocity from the 
inner edge of the torus (Vjet ~ VAlfven ~ Vesc)

– Jet direction is along the rotation axisKudoh, Matsumoto, & Shibata (1998)

Uchida et al. (1999)



Basic Principles of 
Magnetohydrodynamic Jet Production 

(continued)
• This basic configuration of differential rotation and twisted magnetic field 

accelerating a collimated wind can be achieved in all these micro- and macro-
quasar-like objects

• A good working hypothesis, therefore, is that all jets are created by similar 
MHD/electrodynamic processes

Pulsar magnetosphere, 
beyond the light 
cylinder

Collapsing,  magnetized 
supernova core

Magnetized accretion 
disks around white 
dwarfs, neutron stars,  
and black holes

Magnetospheres of 
Kerr black holes, with 
differentially-rotating 
metric



The Special Case of Kerr Black Holes:  
Indirect Magnetic Coupling

• Kerr hole (a/M=0.99995) accreting magnetized plasma:  
Koide, Shibata, Kudoh, & Meier (2002)

– Electromagnetic power is ejected along the rotation axis by 
electromagnetic processes alone

– This Poynting Flux power should eventually be turned into 
particles and a very fast jet

• Similar, but not identical, to Blandford-Znajek process
– Magnetic field is tied to infalling plasma, not horizon
– Frame dragging in the ergosphere twists up the field lines

just as in the non-relativistic accretion disk case
– Back-reaction of the magnetic field accelerates the 

ergospheric plasma to relativistic speeds counter to the 
hole’s rotation:  negative energy plasma

– Accretion of this negative energy plasma 
spins down the hole

• More closely-related to the Punsly-Coroniti (1990) process 
(“ergospheric winds”)

Magnetic 
Field Lines

Ergosphere

Black Hole



Important Point on Black Hole Spin
• Because these mechanisms extract black hole 

rotational energy, B.H. spin can provide a third 
unifying parameter for AGN (in addition to M, 
dM/dt) to throttle the jet power
– Quasars with the same 

• Mass M
• Accretion rate dM/dt
• Can differ in radio power by several orders of magnitude
• There must be an important third parameter

– In jet production models that launch via B.H. spin
Pjet ~ LEdd (dm/dt)  (a / M)2



Proposed Grand Unified Model for 
Extragalactic Relativistic Jet Sources

(Beyond Viewing Angle Effects)

-O



Geometrically Thick Accretion Flows 
Are More Efficient at Launching Jets

• Thicker disks have stronger MHD power (Meier 2001): H ~R ⇒
stronger poloidal magnetic field  Bp ~ (H/R) Bφ

Ljet =  Bφ
2 H2 R2 Ω2 / 4c

• Thermal pressure can assist jet production: Thicker, hotter disk 
lifts plasma out of deep potential well, making jets easier to 
launch

• One or both of these effects may be at work in recent 3-D MRI 
simulations by Hawley & Balbus (2002):

• These theoretical arguments are
consistent with Fender (1999)
jets are suppressed in geometrically
thin disks by a factor > 35

•• But very little accretionBut very little accretion--jet work is being donejet work is being done

Magnetically-
confined jet 
ONLY from 
geometrically 
thick portion

Thick, 
turbulent disk



2.  Acceleration and Collimation



Slow Acceleration and Collimation 
Probably is the Norm for A.D. Winds

• Example:  simulations of magnetized 
accretion disk winds (see, e.g., 
Krasnopolsky, Li, & Blandford 1999)

• After several dynamical times, the 
system reaches a steady state
– Flow accelerates smoothly, reaching escape 

velocity and then the local Alfvén speed(s) 
– Collimation is slow but steady, reaching a 

jet-like state far away from the disk
– Outflow speed is of order the escape 

velocity at the base of the flow
• Conclusion:  Jet outflow is initially 

broad, slowly-collimating and slowly-
accelerating Krasnopolsky, Li, & Blandford (1999)



Slow Acceleration and Collimation 
(continued)

• NOTE:  There is some observational evidence for slow 
collimation and broad outflow at the base of extragalactic jets

– Junor, Biretta, & Livio (1999):
VLBA image of M87 shows wide outflow at the base

– Sikora & Madejski (2001):  
The base of most quasar jets 
must be broad, because 
they lack soft X-ray emission

• For binary black holes, 
slow collimation would
occur over 100 rS ≈108 cm
or 2 nas at 3 kpc

M87



3.  Attaining, and Maintaining,
Relativistic Speeds



Highly-Relativistic Flow 
Probably Produced By 
Strong Magnetic Fields

• By definition, γ >>1 implies Ekinetic >> ρ c2

⇒ low “mass loading” of the jet flow

• For a magnetic jet vjet → VAlfven, so relativistic γjet >>1 flow can be produced 
by having a very strong rotating magnetic field such that

γAlfven ≈ VAlfven/c  =  B/√ 4 π ρ c2   >>  1
⇒ low “mass loading” of the field lines (Poynting-Flux-Dominated)

• The jet remains Poynting flux-dominated (PFD) if its speed remains 
supersonic but sub-Alfvenic (cs < vjet < VA)
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3D Numerical Simulations of 
Poynting-Flux-Dominated Jets

• Models of PFD jets have been built (e.g.: Li et al. 1992; Lovelace et al. 2001; Li et 
al. 2002; Vlahakis & Konigl 2002), but                                                          
no full numerical simulations have produced highly relativistic jets yet

• Best results to date are from 3-D non-relativistic simulations (Nakamura et al. 2001, 
Nakamura & Meier 2003)

Twisting magnetic 
field at base

Field buckles when 
density gets too high

Flow is stable in 
decreasing density region



• Stability of PFD jets in decreasing density galactic atmospheres
– For stability, a strong magnetic field (VA/cS > 1) is certainly necessary, but not sufficient

– Jet is usually stable if the magnetic field becomes more dominant with distance

– Process may be related to why spiral galaxies                   
(with relatively large amounts of gas) generally do not         
produce large FR I / FR II radio sources                        
except in rare cases when jet  ⊥ disk plane                                                    
(Keel et al 2003)

3D Numerical Simulations of 
Poynting-Flux-Dominated Jets 

(Nakamura & Meier 2003)



4.  Special Applications: 
Supernovae & Gamma-ray Bursts



MHD Jet-Powered Supernovae
(Wheeler, Meier, Wilson 2002)

• Many authors have proposed powering both classical and GRB supernovae by jets 
and/or MHD processes

– Classical SN: LeBlanc & Wilson 1970; Bisnovatyi-Kogan 1971; 
Meier et al. 1976; Khokholov et al. 1999; Wheeler et al. 2000; 

– GRB SN: Woosley 1999; MacFadyen et al. 2001; Aloy et al. 1999; 
Ramirez-Ruiz et al. 2002

• New MHD jet-powered supernova model (Wheeler, Meier, Wilson 2002)

– Jet produced in iron mantle, above/outside proto-N.S., not inside
– Basic model

• Proto-pulsar twists up magnetic field; proto-pulsar spins down
• Produces slow, broad MHD wind/jet outflow for ~ 10 sec:

LMHD =  B2 R3 ΩNS/2  = 3 × 1051 erg s-1 B15
2 RNS,6 (PNS/1 ms)-1

Erot,NS =  INS ΩNS
2/2  =  2 × 1052 erg (MNS/1.5M☼) (PNS/1 ms)-2 (RNS,6)2

– MHD outflow couples strongly to ionized iron mantle, ejecting it
– Model is similar to Ostriker & Gunn (1971) idea except 

1012 G  pulsar fields are replaced by  1015 G proto-pulsar fields
– Outflow is composed of iron-rich material

NS

Fe 
mantle



MHD Jet-Powered Supernovae (cont.)
• Model includes a γ-ray burst trigger in the magnetic switch

– In rare instances, when LMHD > Lcrit (B > ~1016 G), jet becomes narrow and fast
– Jet punches through mantle rather than coupling to it (Khokholov & Höflich 2001) 
– Explosion fails
– Outer envelope may be ejected, but mantle falls back

• Failed supernova model for GRBs 
(Woosley 1999; MacFadyen et al. 2001)
now may apply
– Iron-rich jet produced by NS for 

≤ 10 sec (vjet ~ 0.05-0.3 c)
– Mantle falls back over minutes to 

hours
– NS crushed to rotating black hole
– New γ >> 1 jet produced by 

BZ/PC mechanism
– Relativistic jet catches up with 

slow iron-rich jet lobe at 
R  ~  vjet τfallback ~ 1012-13 cm

– Interaction of fast and slow jets 
produces beamed gamma-rays



MHD Jet-Powered Supernovae (cont.)
• Questions & potential problems :

– Can a 1 ms proto-pulsar be spun down to 10-100 ms in a few 
seconds by these jet-producing processes?

– The 1014-15 G fields postulated are typical of magnetars, but 
whence the 1012-13 G fields of normal pulsars?

– Are there other competing jet mechanisms (e.g., neutrino 
jets, asymmetric bounce shock) that are viable?

– The iron mantle is still neutron rich.  Are r-process heavy 
elements still overproduced if mantle ejected?  (problem for 
all SN models)

– What causes some supernovae to fail and produce black 
holes?  MHD/jet effects (e.g., magnetic switch)?  Explosion 
details (neutrinos, bounce shock)? 



Summary and Conclusions
• Jets are produced whenever there is accretion, shrinkage, or collapse in a 

gravitational field
• The “purpose” of jets is to

– Spin down the central object (remove excess angular momentum), even a central 
supermassive black hole

– Impart energy to the interstellar and intergalactic media
– Produce thrust to accelerate pulsars
– Possibly explode supernovae

• Jets appear to be produced
– By magnetic or electromagnetic processes near the central object
– With approximately the escape velocity of the central object (vjet ~ vesc)
– With initially a broad outflow, slowly accelerating and collimating via magnetic 

pressure and hoop stress (pinching)
• To remain stable, jets need

– Strong magnetic fields (Poynting-flux-dominated; VA >> vjet >> cS)
– Steep external plasma gradients

• Even magnetically-dominated jets can be unstable to helical kinks and disruption
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